On 2 + 2-dimensional Spacetimes, Strings, Black-holes and Maximal Acceleration in Phase Spaces

نویسندگان

  • C. Castro
  • J. A. Nieto
چکیده

We study black-hole-like solutions ( spacetimes with singularities ) of Einstein field equations in 3+ 1 and 2+ 2-dimensions. In the 3+ 1-dim case, it is shown how the horizon of the standard black hole solution at r = 2GNM can be displaced to the location r = 0 of the point massM source, when the radial gauge function is chosen to have an ultra-violet cutoff R(r = 0) = 2GNM if, and only if, one embeds the problem in the Finsler geometry of the spacetime tangent bundle (or in phase space) that is the proper arena where to incorporate the role of the physical point mass M source at r = 0. We find three different cases associated with hyperbolic homogeneous spaces. In particular, the hyperbolic version of Schwarzschild’s solution contains a conical singularity at r = 0 resulting from pinching to zero size r = 0 the throat of the hyperboloid H and which is quite different from the static spherically symmetric 3+1-dim solution. Static circular symmetric solutions for metrics in 2+2 are found that are singular at ρ = 0 and whose asymptotic ρ→∞ limit leads to a flat 1+2-dim boundary of topology S×R. Finally we discuss the 1+1-dim Bars-Witten stringy black-hole solution and show how it can be embedded [email protected] [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of Ads Black Strings

This decade has witnessed a growing interest for solutions of general relativity in AdS spaces. This is due to the celebrated AdS/CFT correspondance conjecture1, relating solutions of general relativity in asymptotically AdS spaces to conformal field theories defined on the conformal boundary of the AdS space. In this context, black hole solutions play an important role2. In more than four dime...

متن کامل

0 v 1 9 M ar 1 99 5 Stationary Strings and 2 - D Black Holes

A general description of string excitations in stationary spacetimes is developed. If a stationary string passes through the ergosphere of a 4-dimensional black hole, its world-sheet describes a 2-dimensional black (or white) hole with horizon coinciding with the static limit of the 4-dimensional black hole. Mathematical results for 2-dimensional black holes can therefore be applied to physical...

متن کامل

From wrapped M-branes to Calabi-Yau black holes and strings

We study a class of D = 11 BPS spacetimes that describe M-branes wrapping supersymmetric 2 and 4-cycles of Calabi-Yau 3-folds. We analyze the geometrical significance of the supersymmetry constraints and gauge field equations of motion for these spacetimes. We show that the dimensional reduction to D = 5 yields known BPS black hole and black string solutions of D = 5, N = 2 supergravity. The us...

متن کامل

Gravitational instability in higher dimensions

We explore a classical instability of spacetimes of dimension D > 4. Firstly, we consider static solutions: generalised black holes and brane world metrics. The dangerous mode is a tensor mode on an Einstein base manifold of dimension D−2. A criterion for instability is found for the generalised Schwarzschild, AdSSchwarzschild and topological black hole spacetimes in terms of the Lichnerowicz s...

متن کامل

A gravitational instability in higher dimensions

We explore a classical instability of spacetimes of dimension D > 4. Firstly, we consider static solutions: generalised black holes and brane world metrics. The dangerous mode is a tensor mode on an Einstein base manifold of dimension D−2. A criterion for instability is found for the generalised Schwarzschild, AdSSchwarzschild and topological black hole spacetimes in terms of the Lichnerowicz s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006